

3.6 Attitude Control

HWCI 3.6 Azimuth Positioner

- Requirements Traceability
 - DTRD Section 3.6.1.2 & 3.6.3.2
 - Sun-tracking azimuth pointing of the entire gondola & fixed solar panel with an accuracy of +/- 5 degrees

D: 1-/D:---

Trade Studies

Concept	Feasibility/Driver	Risk/Driver
LDB Azimuth	High / Meets requirements	Low / Flight Proven
SPS pointer	for Demo Flight	
New design for suspended solar array	Medium / Schedule-Cost	Medium / Unproven

E------

3.6 Attitude Control

Kenenth Hall Code 571.W November 4-5, 1998

HWCI 3.6 Azimuth Positioner

• Functional and Performance Requirements

- 3.6.a Sun-track, in azimuth, a 3500lb. Suspended gondola with an accuracy of +/- 5 degrees.
- 3.6.b Use less than 5 watts of power during steady state tracking and less then 20 watts during initial alignment.
- 3.6.c Communicate to the main flight computer via RS-232 interface. System will transmit house keeping status data (i.e., relative azimuth position) and receive uplinked commands.

3.6 Attitude Control

Kenenth Hall Code 571.W November 4-5, 1998

HWCI 3.6 Azimuth Positioner

Functional and Performance Requirements

- 3.6.d Transmit housekeeping data to the LOS PCM stack via a second RS-232 interface.
- 3.6.e Allow independent power switching of the onboard electronics and the torque motor.
- 3.6.f Allow feed-through (slip-ring) of 2-22 gauge
 shielded twisted pair and 4-16 gauge wires
- **3.6.g** Operate in the flight environment.
- 3.6.h Maintain structural integrity during flight termination (i.e.. 10g loading during chute deployment).

3.6 Attitude Control

HWCI 3.6 Azimuth Positioner

HWCI Description

Physical Dimensions

• Weight 112 lbs.

• Height 29.29 in.

• Width 16.0 in.

Electrical Power Draw

• Continuous solar tracking

4 Watts

• "Morning" acquisition (software limited) 18 Watts

• Electronics and Heaters on (Night Mode) 14 Watts

3.6 Attitude Control

Kenenth Hall Code 571.W November 4-5, 1998

HWCI 3.6 Azimuth Positioner

HWCI Description

- Interfaces
 - Power 28V
 - Separate supply connectors for electronics and motor
 - Communication Two RS-232 interfaces
 - Comm 1 communicates with flight computer at 9600 baud to send house-keeping data packets every 30 seconds and receive up-linked commands.
 - Comm 2 transmits house-keeping data packets to the LOS Stack at 2400 baud once per second.
 - Slip Ring
 - Provides 20 feed-through lines rated at 10 amps ea.

3.6 Attitude Control

HWCI 3.6 Azimuth Positioner

- Risk Assessment & Mitigation/Reliability
 - 2 LDB flights and 1 engineering test flight
 - Maintained +/- 1 degree of accuracy and survived flight environment
 - Electronics survived 1st LDB flight/recover; Were refurbished as backup units for the 2nd LDB flight.
 - Structurally survived 10g load during chute deployment.
 - Wallops in-house expertise of design, test, and integration.

HWCI 3.6 Azimuth Positioner

Verification and Accountability

3.6 Attitude Control

HWCI Para No.	<u>Description</u>	Verif. Method
3.6.a	Sun tack +/- 5 degrees	Test (flight history)
3.6.b	5 watt steady state / 20 watt initial	Test (flight history)
3.6.c	RS-232 comm1 w/ flight commuter	Test (flight history)
3.6.d	RS-232 comm2 to LOS PCM encoder	Test (flight history)
3.6.e	Indepent power switching (motor, elect.)	Test (flight history)
3.6.f	Slip-ring	Test (flight history)
3.6.g	Operate in flight environment	Test (flight history)
3.6.h	Flight termnination (10g loading)	Test (flight history)